
Regression Analysis
• Regression analysis is a reliable method of identifying which variables have impact on a topic of 

interest. The process of performing a regression allows you to confidently determine which factors 
matter most, which factors can be ignored, and how these factors influence each other.

• In order to understand regression analysis fully, it is essential to comprehend the following terms:
• Dependent Variable: This is the main factor that you are trying to understand or predict.
• Independent Variables: These are the factors that you hypothesize have an impact on your 

dependent variable.

• Suppose we need to study the influence of your math and biology grades in high school on your first 
year university grades in math, physics, and chemistry. In this example, the independent variables are 
the high school math and biology grades, and the dependent variables are the university grades in 
math, physics, and chemistry.

• To answer the question, we need data. The data, in our example is obtained from the registrar’s office. 
In other cases, it is collected through surveys. The data, thus collected, is called a random sample. The 
random sample is analyzed and conclusions drawn are generalized on the population. 

• Some other examples involving two variables are
• The weight of a newly born child and the age of pregnancy
• The sell of ice-cream and the weather temperature
• Your GPA and study hours per week.
• Cholesterol levels and heart attacks
• Gas prices and distances traveled by drivers.

• In this lecture, we consider only two variables; X the independent and Y the dependent. 
1



Basic Definitions and Terminology 
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𝒙𝒊 𝒙𝒊
𝟐 𝒚𝒊 𝒙𝒊𝒚𝒊

𝒙𝟏 𝒙𝟏
𝟐 𝒚𝟏 𝒙𝟏𝒚𝟏

𝒙𝟐 𝒙𝟐
𝟐 𝒚𝟐 𝒙𝟐𝒚𝟐

𝒙𝟑 𝟑 𝟐 𝟑 𝒙𝟑𝒚𝟑

. . . .

𝒙𝒏 𝒙𝒏
𝟐 𝒚𝒏 𝒙𝒏𝒚𝒏

෍𝒙𝒊 ෍ 𝒙𝒊
𝟐 ෍𝒚𝒊 ෍𝒙𝒊𝒚𝒊
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𝑦 = 𝛽1 + 𝛽2𝑥 + 𝛽3𝑥
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𝑦 = 𝛼𝑥 + 𝛽
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Exponential Model

Linear Model
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Linear Transformation of a Single Gaussian Random Variable
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When the random variables are 
uncorrelated or independent, the second 
term becomes zero.
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30 35

F(y)

y

Recall that when the 
random variables are 
independent, then they are 
uncorrelated. Meaning 
that the correlation 
coefficients are zero.𝑌 = 𝑎1𝑋1 + 𝑎2𝑋2

𝜎𝑌
2 = 𝑎1

2𝜎𝑋1
2 + 𝑎2

2𝜎𝑋2
2 + 2 𝑎1𝑎2𝜎𝑋1𝜎𝑋2𝜌𝑋1𝑋2
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Ƹ𝜇 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 ~𝑁(𝜇, 𝜎

2/𝑛)
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𝐄 ෝ𝝁 = μ,

Ƹ𝜇 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 ~𝑁(𝜇, 𝜎

2/𝑛)
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P=2/3
Birah

𝒀~𝑵(𝟓𝟎𝟎, 𝟖𝟎𝟐)

P=1/3
Ramallah

𝑿~𝑵(𝟔𝟎𝟎, 𝟓𝟎𝟐)
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The Central Limit Theorem

Main result from previous lecture.

1

ෝ𝝁 =
𝟏

𝒏
σ𝒊=𝟏
𝒏 𝑿𝒊 = 𝑵(𝝁𝑿, 𝝈𝑿

𝟐/𝒏), for any n 
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ෝ𝝁 =
𝟏

𝒏
෍

𝒊=𝟏

𝒏

𝑿𝒊 → 𝑵(𝝁𝑿, 𝝈𝑿
𝟐/𝒏) 𝒂𝒔 𝒏 → ∞
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z=x1+x2
y=x1+x2+x2
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y=x1+x2+x2

)𝑃(0 ≤ 𝑌′ ≤ 1

)𝑃(0 ≤ 𝑌 ≤ 1
=
0.1574

0.1666
= 94.44%
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f(x1)

x1

f(x2)

x2

f(x3)

x3

z=x1+x2

f(z)

z

y=x1+x2+x2
z 2-z

𝒇𝒁(𝒛) = න

−∞

∞

𝒇𝑿𝟏(𝒙𝟏)𝒇𝑿𝟐(𝒛 − 𝒙𝟏) 𝒅𝒙𝟏 𝒇𝒀(𝐲) = න

−∞

∞

𝒇𝒁(𝐳)𝒇𝑿𝟑(𝐲 − 𝒙𝟑) 𝒅𝒙𝟑

Mean (X) = ½
Var (X) =1/12

Mean (X) = ½
Var (X) =1/12

Mean (X) = ½
Var (X) =1/12
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ෝ𝝁 =
𝟏

𝒏
෍

𝒊=𝟏

𝒏

𝑿𝒊 → 𝑵(𝝁𝑿, 𝝈𝑿
𝟐/𝒏) 𝒂𝒔 𝒏 → ∞
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The Uniform 
Distribution

a b

Mean = (a + b)/2
Var = (b-a)^2/12

ෝ𝝁 =
𝟏

𝒏
෍

𝒊=𝟏

𝒏

𝑿𝒊 → 𝑵(𝝁𝑿, 𝝈𝑿
𝟐/𝒏) 𝒂𝒔 𝒏 → ∞
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0

1/2

1

1/2

Mean (X) = ½
Var (X) =1/4

෍

𝑖=1

𝑛

𝑋𝑖
Binomial with parameters 
n=50 and p=1/2

ෝ𝝁 =
𝟏

𝒏
෍

𝒊=𝟏

𝒏

𝑿𝒊 → 𝑵(𝝁𝑿, 𝝈𝑿
𝟐/𝒏) 𝒂𝒔 𝒏 → ∞



Normal Approximation of the Binomial Distribution
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Source:  https://digitalfirst.bfwpub.com/stats_applet/stats_applet_2_cltbinom.html

𝜇𝑋 = 25; 𝜎𝑋
2 = 12.5

(50, 0.5) )𝜇𝑋 = 𝑛𝑝; 𝜎𝑋
2 = 𝑛𝑝(1 − 𝑝

P X = x =
𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥

𝑓𝑋(𝑥) =
1

2 𝜋 𝜎𝑋
2
𝑒

− 𝑥 − 𝜇𝑋
2

2 𝜎𝑋
2

; − ∞ < 𝑥 < ∞

The Binomial with 
parameters n=50 and 
p=1/2 along with the 
Gaussian distribution with 
same parameter.

https://digitalfirst.bfwpub.com/stats_applet/stats_applet_2_cltbinom.html
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Estimation of Parameters
• The field of statistical inference consists of those methods used to make decisions or to draw 

conclusions about a population. These methods utilize the information contained in a random 
sample taken from a population in drawing conclusions.

• The population consists of all the conceivable items, observations, or measurements in a group. In 
most cases, it is not practical to obtain all the measurements in a given population (eligible voters, 
the unemployed, people below poverty line, Birzeit University students, high school teachers, …)

• For example, suppose we need to find the average height and standard deviation of the university 
male and female students. The population here is all university students. It is evident that to get 
exact results, we need to take the height of all students and compute the average and the standard 
deviation (these are the population parameters).

1

• In practice, a random sample of size n is drawn from the university 
population. The heights of the selected students are taken, and then 
the mean and standard deviation of the sample are calculated. The 
sample mean and standard deviation are used to describe the actual 
mean and standard deviation

• Estimates of population parameters derived from a subset of the 
measurements in a sample drawn from the underlying population 
are called sample statistics



Estimation of Parameters
• Statistical inference may be divided into two major areas: 

Parameter estimation and hypotheses testing.

• In this chapter, we focus on parameter estimation and 
consider hypothesis testing in the next chapter.

• For populations, we define numbers called parameters
that characterize important properties of the distributions, 
like the mean and standard deviation of a normal 
distribution, the probability of success p in the binomial 
distribution, the rate of arrival in the Poisson process, and 
the end points a and b of the uniform distribution.

• Estimation represents ways or processes of learning and 
determining the population parameter based on the model 
fitted to the data.

• Point estimation, interval estimation, and hypothesis 
testing are three main ways of learning about the 
population parameter from the sample statistics.

Point and interval estimation

መ𝜃 = 𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑛)

𝑃(𝜃1 ≤ 𝜃 ≤ 𝜃2) ≥ 1 − 𝛼 ; 0 < 𝛼 < 1

θ෠𝜃 𝜃2𝜃1



Estimation of Parameters

θ෠𝜃

Point and interval estimation

መ𝜃 = 𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑛)

• In point estimation, we estimate the unknown parameter using a single 
number that is calculated from the sample data.
• The point estimate of the height of students based on the random sample would be a number 

like 175cm for male students and 165 cm for female students.

• In interval estimation, we estimate an unknown parameter using an interval 
of values that is likely to contain the true value of that parameter (and state 
how confident we are that this interval indeed captures the true value of the 
parameter).
 A confidence interval would be like: 

P (height of male students falls between 173cm and 177cm) > 0.95.

• In hypothesis testing, we begin with a claim about the population (usually, 
called the null hypothesis), and we check whether or not the data obtained 
from the sample provide evidence in favor or against this claim.

 The hypothesis testing would test the null hypothesis:  Height of male students = 

175 cm versus the alternative hypothesis Height > 175 cm 

𝑃(𝜃1 ≤ 𝜃 ≤ 𝜃2) ≥ 1 − 𝛼 ; 0 < 𝛼 < 1

𝜃2𝜃1



Joint pdf = product of marginal pdf’s



Formal Definitions and Terminology

𝑓෡𝜃
෢(𝜃)



θ෠𝜃 𝜃2𝜃1

𝑃(𝜃1 ≤ 𝜃 ≤ 𝜃2) ≥ 1 − 𝛼 ; 0 < 𝛼 < 1

Point and interval estimation

መ𝜃 = 𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑛)

The estimator ෠𝜃 is a random variable 

with a sampling distribution 𝑓෡𝜃
෢(𝜃). 

This estimator should have certain 
desirable properties that makes it 
close to the true value in a 
probabilistic sense.
• It should be unbiased
• Should have a small variance
• Should have a small mean squared 

error.
These properties are considered next.
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Desirable Properties of Point Estimators
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Mean Squared Error of an Estimator 
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Four more examples 
on point estimators 
are fully explained 
in the next lecture, 
entitled “examples 
on point estimators)

The sampling distribution of 

the statistic 𝑓෡𝜃
෢(𝜃) .



θ෠𝜃 𝜃2𝜃1

𝑃(𝜃1 ≤ 𝜃 ≤ 𝜃2) ≥ 1 − 𝛼 ; 0 < 𝛼 < 1

Point and interval estimation

መ𝜃 = 𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑛)

The estimator መ𝜃 is a random variable with a 

sampling distribution 𝑓෡𝜃
෢(𝜃). This estimator 

should have certain desirable properties that 
makes it close to the true value in a 
probabilistic sense.
• It should be unbiased
• Should have a small variance
• Should have a small mean squared error.
These properties are considered next.

In interval estimation, we estimate an 
unknown parameter using an interval of 
values that is likely to contain the true value 
of that parameter (and state how confident 
we are that this interval indeed captures the 
true value of the parameter)
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Examples of Point Estimators
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Desirable Properties of Point Estimators
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Mean Squared Error of an Estimator 
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The sampling distribution of 

the statistic 𝑓෡𝜃
෢(𝜃) .
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(𝒙𝟏, 𝒙𝟏) (𝒙𝟏, 𝒙𝟐) (𝒙𝟏, 𝒙𝟑)

(𝒙𝟐, 𝒙𝟏) (𝒙𝟐, 𝒙𝟐) (𝒙𝟐, 𝒙𝟑)

(𝒙𝟑, 𝒙𝟏) (𝒙𝟑, 𝒙𝟐) (𝒙𝟑, 𝒙𝟑)

𝐸 𝑋𝑖
2 = 𝐸 𝑋𝑖𝑋𝑖 = 𝜇𝑋

2 + 𝜎𝑋
2

𝐸 𝑋𝑖𝑋𝑗 = 𝜇𝑋
2

𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑟𝑚𝑠 𝑛2

𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙: 𝑛
𝑂𝑓𝑓 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑛2−𝑛
= n(n − 1)
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0

1-θ

1

θ

Mean (X) = θ
Var (X) =θ(1-θ)

r

The bias approaches 0 as n goes to infinity
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Y = aX + b ⇒ 𝜇𝑌 = 𝑎𝜇𝑋 + 𝑏, 𝜊𝑌
2 = 𝑎2𝜊𝑋

2, 



Maximum Likelihood (ML) Estimation
(A Method for Obtaining Point Estimators)

1

• Point Estimation deals with the method of estimating 
an unknown parameter of a population based on 
random samples from the same population. In the 
parameter space, it is represented as a point. Hence the 
name point estimation. Desirable properties of a point 
estimator was addressed in a previous lecture.

• The assumption here is that the parameter to be 
estimated is a constant with one value, and the sample 
statistic computed from the sample is estimating that 
value exactly.

• Maximum Likelihood is one method of obtaining point 
estimators..

• In this lecture, we will explain this method and present 
a number of illustrative examples.

θ෠𝜃
መ𝜃 = 𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑛)

𝜃2𝜃1



Maximum Likelihood (ML) Estimation
(Method for Obtaining Point Estimators)

2

P=0.1 P=0.9

3 heads in 10 trials
Which P???



Maximum Likelihood (ML) Estimation

3

3 heads in 10 trials
Which P???

𝟎 ≤ 𝒑 ≤ 𝟏
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0

1-θ

1

θ

Mean (X) = θ
Var (X) =θ(1-θ)
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1

In point estimation, we estimate the unknown parameter using a single number that 

is calculated from the sample data.

Interval Estimators for the Mean and Variance

θ෠𝜃 𝜃2𝜃1

𝑃(𝜃1 ≤ 𝜃 ≤ 𝜃2) ≥ 1 − 𝛼 ; 0 < α < 1

෠𝜃 = 𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑛)

point estimate
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Point 
estimate

1 − 𝛼

A random sample of n measurements 

𝑋1, 𝑋2, . . . , 𝑋𝑛 is drawn from a Gaussian 

distribution with an unknown mean and a 

known variance. The objective is to 

construct 100(1-α)% confidence interval 

on the mean. 
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Point 
estimate

Choice of the Sample Size

𝑃 −𝑧 Τ𝛼 2 Τ𝜎𝑋 𝑛 ≤ ො𝜇𝑋 − 𝜇𝑋 ≤ 𝑧 Τ𝛼 2 Τ𝜎𝑋 𝑛 = 1 − 𝛼

1 − 𝛼

E = | Ƹ𝜇𝑋 − 𝜇𝑋| ≤ 𝑧 Τ𝛼 2 Τ𝜎𝑋 𝑛
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8.7 11.179.94
X

E = | Ƹ𝜇𝑋 − 𝜇𝑋| ≤ 𝑧 Τ𝛼 2 Τ𝜎𝑋 𝑛
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E = | Ƹ𝜇𝑋 − 𝜇𝑋| ≤ 𝑧 Τ𝛼 2 Τ𝜎𝑋 𝑛
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The number of independent pieces of information 

that go into the estimate of a parameter are 

called the degrees of freedom

Ƹ𝜇𝑋 =
1

𝑛
෍

𝑖=1

𝑛

𝑋𝑖 ⇒ 𝑋𝑛 = 𝑛 Ƹ𝜇𝑋 −෍

𝑗=1

𝑛−1

𝑋𝑗



2

A plot of the t probability density function for 4 different 

values of the degrees of freedom k = n-1, Wikipedia

𝑇 =
Ƹ𝜇𝑋 − 𝜇

Τො𝜎𝑋 𝑛

ො𝜇𝑋 =
1

𝑛
෍

𝑖=1

𝑛

𝑋𝑖

ො𝜎𝑋
2 =

1

𝑛 − 1
෍

𝑖=1

𝑛

𝑋𝑖 − Ƹ𝜇𝑋
2
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1 − 𝛼

𝑃 −𝑡 Τ𝛼 2,n−1 Τ𝜎𝑋 𝑛 ≤ ො𝜇𝑋 − 𝜇𝑋 ≤ 𝑡 Τ𝛼 2,n−1 Τ𝜎𝑋 𝑛 = 1 − 𝛼

𝑃 | ො𝜇𝑋 − 𝜇𝑋| ≤ 𝑡 Τ𝛼 2,n−1 Τ𝜎𝑋 𝑛 = 1 − 𝛼
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8.11 11.779.94
X

𝑃 | ො𝜇𝑋 − 𝜇𝑋| ≤ 1.83 = 0.95



5

df=n-1
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𝑃 | ො𝜇𝑋 − 𝜇𝑋| ≤ 22 = 0.95
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On the next slide, we derive the pdf of the each component 𝑍𝑖
2

Y = 𝑍2 ⇒ 𝑓𝑌(𝑦) =
1

2𝜋𝑦
𝑒
−𝑦
2 ; 𝑦 ≥ 0

𝑓𝑍 𝑧 =
1

2 𝜋
𝑒−

𝑧2

2

𝐸 𝑌 = 1, 𝐸 𝑍2 = 1

Var 𝑌 = 2

The shape of the Chi-square 
distribution depends on the 
number of degrees of freedom
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x-x

y
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Tec
Text Box
distributed
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ො𝜇𝑋 =
1

𝑛
෍

𝑖=1

𝑛

𝑋𝑖

The number of independent 

pieces of information that go 

into the estimate of a 

parameter are called the 

degrees of freedom
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𝜒
0.025, 10
2 = 20.483

𝜒
0.975, 10
2 = 3.247

0.95 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

𝜒
0.025 , 9
2 = 19.023

𝜒
0.975 , 9
2 = 2.7

0.95 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

𝜒0.05, 11
2 = 19.675

𝜒0.95, 11
2 = 4.575

0.90 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

𝜒
0.005,5
2 = 16.750

𝜒0.995,5
2 = 0.412

0.99 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒
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3.247 20.483



7

2.7 19.023
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1

1 2 3 4 . n

(S,F) (S,F) (S,F) (S,F) (S,F) (S,F)

𝑿 → 𝑵 𝒏𝒑, 𝒏𝒑(𝟏 − 𝒑)

Unbiased Estimator
Consistent Estimator: Var →0 as 
n→ infinity (MVUE)



2

𝒁 = (𝑿 − 𝝁𝒙)/𝝈𝑿 → 𝑵 𝟎, 𝟏



3

1 − 𝛼



4Tighter upper and lower bounds
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