Regression Analysis

Regression analysis is a reliable method of identifying which variables have impact on a topic of
interest. The process of performing a regression allows you to confidently determine which factors
matter most, which factors can be ignored, and how these factors influence each other.
In order to understand regression analysis fully, it is essential to comprehend the following terms:
* Dependent Variable: This is the main factor that you are trying to understand or predict.
* Independent Variables: These are the factors that you hypothesize have an impact on your
dependent variable.

Suppose we need to study the influence of your math and biology grades in high school on your first
year university grades in math, physics, and chemistry. In this example, the independent variables are
the high school math and biology grades, and the dependent variables are the university grades in
math, physics, and chemistry.

To answer the question, we need data. The data, in our example is obtained from the registrar’s office.
In other cases, it is collected through surveys. The data, thus collected, is called a random sample. The
random sample is analyzed and conclusions drawn are generalized on the population.
Some other examples involving two variables are
* The weight of a newly born child and the age of pregnancy
The sell of ice-cream and the weather temperature
Your GPA and study hours per week.
Cholesterol levels and heart attacks
* Gas prices and distances traveled by drivers.

In this lecture, we consider only two variables; X the independent and Y the dependent.



Basic Definitions and Terminology

First, let us introduce some basic definitions about the random sample

The sample mean |1y, is defined as 1, = lZ::».;.
Fl
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The sample variance 65 , when the pﬂpulatmn mean u 1s unknown 1s defined as:
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The correlation coefficient between sampled measurements x and vy 1s

Cw 1
Pyy =—0 Z(r —[ty) (v, — ft) ; Cy sample covariance
Y G0y (n - 1)6467 ‘5

The correlation coefficient between two random variables (X) and (Y) 1s a measure of

association between X and Y.

Py 1s bounded between —1< p,;. < 1. The magnitude of the correlation coefficient

indicates the strength of the association. For example, a correlation of p,; =0.9

suggests a strong, positive association between two variables, whereas a correlation of

P =—0.2 suggest a weak, negative association. A correlation close to zero suggests no

linear association between two variables.

Positive Correlation

Negative Correlation

No Correlation



Linear Regression

Suppose in a certain experiment we take measurements in pairs, 1.e. (X1, V1). (X2, V2)seo. (X0, Va)-
We suspect that the data can fit a straight line of the form v=aox+ 7.

Suppose that the line is to be fitted to the (n) points and let ( € ) denote the sum of the squares
of the vertical distances at the (n) points, then

"

= Z[:"!f i} (H'Yf+ﬁ)]2

i=1

The method of least squares specifies the values of ccand  that minimize €.
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natru{ form, these equations are:
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Solving the abmre two equations for the two unknowns, we get:

. These two equations are called the normal equations.

Cr 1 u - . . -
a=—Z = 2 (i) (- fy), B o=l oy
Oy (n - D)oy = ' _

- " a7 " "
where Cyy, is the sample covariance between x and y, ¢ is the sample variance of the X

measurements (as defined earlier), /4, is the average value of the X measurements, and f, is
the average value of the Y measurements.
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Finally, the sample correlation coefficient can be calculated as p, . =

X1 (x1)2 Y1 X1Y1
X2 (xz)z Y2 X2Y2
X3 (3)> 3 X3Y3

xn (xn)z n xnyn

le Z(xl)z z}’l in}’i



Fitting a Polynomial by the Method of Least Squares:

Suppose now that instead of simply fitting a straight line to (n) plotted points, we wish to fit
a polynomial of the form:

y=PB, +B,x +B;x°
The method of least squares specifies the constants [3,.p3, and3; so that the sum of the

squares of errors € is minimized.
m

€ = Z[J"}-' (B + ﬁzer“ﬁixfz)T

i=1
Taking partial derivatives of € with respectto f,. 3, and [, setting the derivative to zero
and solving, we get the following set of normal equations

BIII+[32§X1+63;Xf:;Yi ......... (1) y = ﬁl L ﬁzx_l_ﬁgxz
BiY X +By ) X] +Bs D) X =2 XK,V e (2

i=1 i=1 i=1 i=1
BiY X: +PBy 0 X +Bs 2 X, =D XiY; e (3)

=1 1=1 1=1 1=1

In matrix form, these equations are:

no oYX, ZXf B Z}G.

in fo fo Bz = infﬁ
2x0 2x) 2x{ B | 22X

Then these equations can be solved, simultaneously for3,., and3; .



Fitting an Exponential by the Method of Least Squares:
Suppose that we suspect the data to fit an exponential equation of the form:

y = ae™ (1) I
Taking the natural logarithm of (1) .

In(y) = In(a) + In(e™)

In(y) = In(a) + bx

y' =p" + a'x
As we can see, equation (2) has the same form of the linear regression considered earlier
where y = 3+ ax . Hence, the solution involves the following steps

o Take the natural logarithm of each measurement vy;.
o The new pairs of the data now become (xi, Inyi), (x2, Iny2), ... (Xq, Inyy).
o Solve this regression model for ' and o' .

o B'=Inla) =a=¢€

o o =0b




More Regression Models

EXAMPLE: Suppose that the polynomial to be fitted to a set of (n) points is y = b x. It can be
shown that:

M n
b=> x> x
i1

i=l1

EXAMPLE: Let y=ax’.

Taking the In of both sides, we get Iny=Ina+ b In X, hence transformed into the linear model
y=p+ta'x (Linear regression)

where:y'=Iny , fp'=Ina , a'=b , X'=lnx

EXAMPLE: Let y=1—¢ *

1
1-y

Manipulation of this equation yields: In |:]11[ H =-Ina+blnx

which is in the standard form: y'=p'+a'x’ (Linear regression)

EXAMPLE: Let y=

a+bx

l+e

L - C :
ln[ —Y] =a+ b x, which is in the standard linear form: y'=p'+a'x'  (Linear regression)
y

y=ax+pf



EXAMPLE: The cumulative number of coronavirus cases recorded in a certain city over a

10-day period is shown in the table.

a. Assuming that a simple linear regression model is appropriate, fit the regression model
. . - . : Number of

relating the number of coronavirus cases (y) to the time in days (x). U

b. What is the expected number of cases y on the 20’th day?

c. Find the correlation coefficient between x and y.

Solution:

cases
60

72
84
91
97
106

a. The linear regression model to be fitis y = [f + ax
115
117

10 12
Here, » X, =55, chy = 6498, Zy = 1037 1

i=1 i=1 10 161
The equation parameters are given by: a=9.6303, p = 50+?333. y = 50.73334+9.6303x

b. After 20 days, the linear model predicts a number at: y = 50.7333+9.6303x (20) = 244.
c. The correlation coefficient between the x and y data 1s

HZ TilF_Z 21
= = = =00977.
n(n—1)c ,c
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EXAMPLE: The number of coronavirus cases recorded in a certain city over a 10-day . Number of
period is shown in the table below. L 599
a. Fit the regression model relating the number of coronavirus cases (y) as a function of time - —
in days (x) using a linear, a quadratic, and an exponential model. 25,00 = —
b. What is the expected number of cases y on the 20’th day using each model? 6 1169
. 7 1328

c. Use each one of the model to predict the number of cases on day 10. 2000 g 1382 v
Solution: o Lot {‘/‘
a. The linear regression model to be fitis y=ax+ f =131.9697x+388.2667 1ol /,1/

The quadratic model is: y = S, + B,x+ B,x”> =522.8500+64.6780x+6.1174x” 1qqg |

¥
: = X . 5x 1 1

The exponential model is: y = a e™ =533.779¢"'** 500 ot Exponential Model
b. After 20 days, SR S S S S

the linear model prediction: y =131.9697(20)+388.2667 =3028 2000 "

the quadratic model prediction: y = 522.8500 +64.6780(20) +6.1174(20)* = 4260 J_'_,.,,-—"""

) 1500

the exponential model prediction: y = a ™ =533.779¢"%***” = 6203 /
¢. On day 10, 1ot /f’ ‘ ‘ ‘

the linear model prediction: y =131.9697(10)+ 388.2667 =1707 500 P,,l"*"’" ’ — -

inear Mode
the quadratic model prediction: y = 522.8500 +64.6780(10) +6.1174(10)* =1780 | L 1 |
0
the exponential model prediction: y =533.779¢"'***"” =1820 S - oo T w B~ S



EXAMPLE: The number of pounds of steam used per month by a chemical plant is thought
to be related to the average ambient temperature (in “F) for that month. The past year’s
usage and temperature are shown in the following table

Month Temp. Usage Month Temp. Usage
Jan. 21 185 July 68 621
Feb. 24 214 Aug. 74 075
Mar. 32 288 Sept. 02 562
Apr. 47 424 Oct. 50 452
May 50 454 Nov. 41 373
June 59 539 Dec. 30 273

a. Assuming that a simple linear regression model is appropriate, fit the regression model

7007
600

relating steam usage (y) to the average temperature (x).
b. What is the expected usage when the average temperature is 55 F =

> 400

c. Find the correlation coefficient between x and . 0

200 .

00— | S B

200 25 30 3B 40 4 50 5 60 65 70
X



Solution:
a. The linear regression model to be fitis v =ax + [

12 12 12 12
Here, » x, =558, Y x2=29256, » zy =265771, Y y = 5060
=] =1

1=1 i=1
The equation parameters are given by: o= 9.2182, B = - 7.3126. The minimum value of the

M

mean square error calculated using MMSE = Z [ y, - (ax.+p )]2 = 38.1315.

i=1
b. when the temperature 1s 55 F°, the linear model predicts a usage of y=9.2182%55 -7.3126
= 499.69. (Note that this temperature is not one of those that appear in the table, yet the
model can predict the usage at this temperature).
c. The correlation coefficient between the x and y data 1s:_

n n n
”Z X Vi — Z X; Z Vi
i=1 i=1

To=— = =l —0.9999. This is very close to 1 meaning that the data are
n(n—1)c,ocy

highly correlated (we know that when y 1s linearly related to x, p, , =1




Jointly Gaussian Random Variables

Theorem: Let X; and X> be two jointly Gaussian random variables. Define a linear transformation

Y =aX +aX,

". The new random variables ¥, and Y, are jointly Gaussian.
Y, =bX, +bX, ’

of the form

Proof: The joint pdf of ¥; and Y, can be determined as (discussed in the previous chapter)

fx';: (%1 .x2)
f}ri,jrz(yiay)= e (1)

|71
dyq 9y,
Ay, ay, dx;  dxy a; 2
Note that J= = = : >0
| dx, 0x>» |““'W"* dy,  0y» b1 bg o7 Ul
dx; dx,

Since X; and X; are jointly Gaussian, and since J is a constant (J > 0), then from (1), ¥; and Y,

are jointly Gaussian. The marginal pdf’s are evaluated from the joint pdf
frn ) = [ fyaye 01 272) Ay fy2 2) = [ oy fynga 1+ ¥2) dy
These marginal pdf’s are Gaussian

Therefore, any linear combination of Gaussian random variables is Gaussian.



Linear Transformation of a Single Gaussian Random Variable
EXAMPLE: The profit Y of a manufacturing plant is related to the demand X by the

relationship ¥ =aX +5. Let X be a Gaussian r.v with mean x, variance o7 . Find fy(y).

SOLUTION: Y = aX + 5 1s a monotonic function.

J/x (X) dy y—b
W=7 | Hals x=—
dy/dx dx a
y=b 2
, | e , R
ﬁ,(}):_ e 2oy — e 2oy
= \/2 T oy \/2 7 (acy)’
~(3~(b +a uy))’ ~(v= pry)’
_ 1 e 2 (acy ) _ 1 e 2 u:r%-
1/2 7 (ao,) 1/2 T oy
Therefore, ¥ = aX +5 is Gaussian with mean z. = a z_+ b and variance o, = a’ o,

Result: A linear transformation of a Gaussian random variable is also Gaussian




—(y - #Q.‘JE

1 G'g - - -

Result: If Y =a X, +a, X, then f (y) = ¢ °7" ; (X1,X2 jointly Gaussian)

\/2 T Jf_ .
When the random variables are

Where, 1, =ayuy + a,u, _____ uncorrelated or independent, the second

—
2 2.2 2 2 term becomes zero.
Oy = O}l + a,0 y, + 2 4,0, Oy Py x,

Proof: Here, we re-derive the variance of Y, considered in an earlier lecture

Hy = fy + Gy

O-I;z — E{(Y N ;uy)z} — E{(%X1 + azXz - auu'xl - azﬂ}fl )2}
= E{la,(X, - pty) + a,(X;- 1))
= E{a; (X, - #Xl)z} + E{a; (X, - ﬂx;)z} + 2.a; ay E\(X] - e (X, - phy )}

— 0y = a;0y + a0y + 2 a,a,0y Oy Py y

E{(}‘{l - ;“Xl )( (-Yz - #;{2))} .

1s the correlation coefficient.

Where, pyy =

Oy

1 UXJ

A similar result can be obtained when Y i1s a linear function of more than two Gaussian random
variables.



Remark: For a Gaussian random variable X with mean £4 and variance O';- , we recall the
following two results when evaluating probabilities:

P(X<x)=0 | " Hx | px,<x<x)=0 |2 " Hx| @ |X " FHx
O x ot

O x

EXAMPLE: Let X; and X be two Gaussian random variables such that: z4 =0, Cr“; —4,
=10, 5 =9, p,=025. Define Y = 2X; + 3X;

a. Find the mean and variance of Y
b. Find P(Y< 35).
SOLUTION: 14 B

ey =24 + 311, = 2(0) + 3(10) = 30
oy =40; +90;, +2(2)(3)(0,)(0,) o1,
= 4(4)+9(9) + 2(2)(3)(2)(3)(0.25)= 115

35230 ) _ 4(0.466) = 0.6794 —
115

P(Y <35)= @




Theorem: Let X;, Xo, ..., Xu be a sequence of independent Gaussian random variables, each with mean

Recall that when the

random variables are
Y=0X,+0CX, +---+(C,.X,, C;, Cy,C(C, are constants independent, then they are

and variance crf . Define

Then Y has a Gaussian distribution with mean and variance given by: uncorrelated. Meaning
M = Clyl + v;f_’2 Ly + o + Cﬁ_yﬁ_ . . . tha::fthe correlation
=a +a coefficients are zero.
o, =Clo; + C,o, +..+C.o. L e
- 2 _ 2 2 2 .2
oy = ajox, + aj0x, + 2 a,0,0% 0x2Px,x,

EXAMPLE: Let X; and X, be two independent Gaussian random variables such that: s =0,
ol =4, u,=10,0, =9 . Define Y = 2X; + 3X;

c. Find the mean and variance of Y
d. Find P(Y< 35).

SOLUTION:
i, =241, + 31, =2(0) + 3(10) = 30

o, =40 +90. =4(4)+9(9)=97
35-30

97

w

o
w
()]
<

) =®(0.5077)= 0.6942.

P(Y <35)=(




Theorem: Let Xj, X, ..., X, be a sequence of independent Gaussian random variables, each

. . T e ~ 1
with mean p and variance o~ (iid). Define the sample mean (sample average) as I = —).;* ; X;
n

Then, x has a Gaussian distribution with mean and variance given by:

E(y=u, Var(1)=c’/n . 1
U= ;Z?=1Xi ~N(,Lt, O-z/n)

Proof: Rewrite /i in the form:

n_l +1X+ +1X
ﬂ—nl 2 o

which has the form: ¥ = C, X; + (X, + --- + €, X,,, where Xi, X, ..., Xy are 11d Gaussian 1.v’s.
The mean and variance of [ are:

. 1 1 1 1 1)’ 1Y 2
E(u)=—u+—pU+..+— U= oy :(—] o’ J{—] o’ +_..+(—] o=
1 1 1 1 1 1 1
Lemma: If X1, X, ..., X, are a sequence of independent Gaussian random variables, each with
mean # and variance o, then Z = #;\/{ is the standard Gaussian variable with mean
O 1

zero and variance one.



EXAMPLE: The weights of cement bags are normally distributed with a mean of (50) kg and

a standard deviation of 2 kg.

a. What is the probability that one randomly selected cement bag will weigh more than 51 kg?

b. What is the probability that 5 randomly selected cement bags will have a mean weight of
more than 51 kg

c. Find n, such that the probability that the mean weight of n randomly selected cement bags
be larger than 51 kg is less than 0.01.

SOLUTION: A 1on 2
a. P(X>51)=1-a )=1-®(0.5)=1-0.6915 = 0.3085 ‘

b. Sample average: i=(X,+ X, +..X,)/5 ;is a random variable with mean and variance

| 1 1 .
E()=—p+—pt+..+—pu=pu=50,Var(fi)=0"/n=(2)"/5=0.8
n- n "

: 51-50 , /
P(u>51)=1-d( T )=1-®( 1.118) =1-0.8682 =0.1318 /
c. p=(X,+X,+..X )/n isarandom variable with mean and variance /
1 1 1 .
E()=—p+—pt+..+—pu=pn=50,Var(i)=c"In=2) /n=4/n
n n n
. 51-50 51-50 -
Need to find n such that P(u > 51)=1-@( )<0.01 = @O )>0.99 R
f NIVE 4/ n E(@) =,
From the Tables, we get ®( #)=0.99 = u = 2.3263=5\;4_T50 = n=>22 5
n




EXAMPLE: The monthly rent of a two-bedroom apartment in the city of Ramallah is a random
variable, X, that follows the Gaussian distribution with a mean of $ 600 and standard deviation
of $ 50. The monthly rent of a similar apartment in the neighbouring city of Al-Birah is also a
random variable, Y that follows the Gaussian distribution with a mean of $ 500 and a standard
deviation of $ 80. If the number of available rental apartments in Al-Birah is double than that
in Ramallah. Find the probability of renting an apartment with a rent less than $ 540.

SOLUTION:
Let R be the monthly rent (irrespective of the city), then

1 2

R=P(selecting Ramallah)(R|Ramallah)+P(selecting Birah)(R|Birah) = R = gX - e Y.
R is a Gaussian random variable with mean and variance P=1/3 P=2/3
1 2 1 2 Ramallah Birah
Ha =g T2 My =3 (600) + = (500) = $533.33 X~N(600,502) Y~N(500,802)
|
3 l 2 4 2 l 2 4 2 .
Or = go}f + 50'}. = 5(50) +§(80) =3122.22 = o, =$55.87

540 — u, )= ( 540-533.33

P(R <540) = @( —

)=@( 0.1193 )=0.5475

o)

\_

R




EXAMPLE: Soft-drink cans are filled by an automated filling machine. The
mean fill volume 1s 330 ml and the standard deviation 1s 1.5 ml. Assume that
the fill volumes of the cans are independent Gaussian random variables. What
1s the probability that the average volume of 10 cans selected at random from
this process 1s less than 328 ml.

SOLUTION: Average fill Volume; #=(X,+X,+..X))/n; this quantity is a

random variable.
Mean and variance of /

E(ix>=;ﬂ+i#+-~+;ﬁ=ﬁ Var(f)=c" I n=(15)* /10=0.225

The random variable 4 1s Gaussian with mean 330 and variance 0.225.
328 —-330

v0.225

P(f1<328) =D )=D(-4.21)=1.27*10""]




The Central Limit Theorem

Main result from previous lecture.

Theorem: Let X, X, ... , X, be a sequence of independent Gaussian random variables, each

with mean # and variance o° (iid). Define the sample mean (sample average) as

L1
1= ;E?=1Xi

Then, 4 has a Gaussian distribution with mean and variance given by:

E(fy=u Var(i)=0c"/n

~ 1
U= ;Z?ﬂ X; = N(uy, 6)2(/11), for any n



The Central Limit Theorem:

Let X1, Xo, ..., X, be a sequence of independent random variables, each with mean £4. and variance

Of‘: , then the sample mean defined as: i = :_12?:1 X; approaches a normal distribution as
n — o0, with mean and variance given by: E{u; =, Var() = -:':.-'_f /n . That is, the limiting form

of the distribution of: Z = K as n —> o0, 18 the standard normal distribution.

Oy / \/_
e In many cases of practical interest, if n =30, the normal approximation will be
satisfactory regardless of the shape of the population or the nature of the distribution

(discrete or continuous).

e The theorem works well even for small samples n = 4, n=5, when the population has a
continuous distribution as illustrated in the following example.

1
:;le‘ - N(py, 0%/n) asn - oo



Find and sketch the pdiof ¥ =X, + X, + X,.

we convolve the pdf of Z with that of X3. The result is:

EXAMPLE: Let X, X,, X be three independent uniform random variables over the interval (0, 1).

SOLUTION: First, we find the pdf of Z=X,+ X> by convolving the pdf of X; with that for X>. Then,

-

0 y<0
v /2 0<y<l
ﬁ,(y):-<3y—y2—3/’2 l<y<?2
BG-»)7'/2 2<y<3
0 y>3
1.2}
1_
0.8
0.6
0.4f
0.2/
% 0.5 1

08
0.6

The mean Y is: t4 =3E(X) = 3[

Var(1)=0? =30, =302

12

Mean and Variance of Y: ¥ = X, + X, + X,

a+b_2E
2 2

(1-0) 3

-~
i

_"
—J

12

L Solid: N (g i) , approximation

2712
Dashed: Exact pdf found A

| through convolution ... /

————




In the figure below we plot the pdf’s of X,, Z =X, +X,and ¥ = X, + X, + X, . In addition, for the

sake of comparison, we plot the pdf of a Gaussian distribution with the same mean 3/2 and variance
3/12 as that of Y. It 1s very clear that even for n=3, f(y) is very close to the Gaussian curve.
Now let us calculate P(0< Y < 1) using the exact formula and the approximation.

1
PO<Y <1)=[y?/2dy =0.1666; Exact probabili PO<Y'<1) 01574
( ) -[[y : S R P(O<Y<1) 0.1666 I4A4%
; 1-1.5 0—-1.5 : N
P(0<Y’<1) :(IJ(\/*)—(IJ(F) =0.1587-0.0013= 0.1574.; Gaussian approximation
0.25 0.25
. 3 3 L
0 y< 0 0.8t Solid: N (EE) , approximation
- Dashed: Exact pdf found -

};: /2 0 < h% o | 0.6+ through convolution
H()=43y-»"-3/2 1l<y<2 | §
(B-y)/2 2<y=<3

0 v>3 0.2;

b
0.4/




f(x2)

Mean (X) = %
Var (X) =1/12

05 2 1

f(x3)

06 Mean (X)=%
0.4} Var (X) =1/12

0 05 x3 1

Dashed: Exact pdf found

0.6- through convolution =/
ﬁ

08+ Solid: N G%) , approximation

@) = f f2(Dfxa(y — x3) d

y=X1+Xx2+x2

] |

12 o
1_
0.8 0.8
086  Mean (X)=% 0.8
0.4, Var(X)=1/12 04/
0.2 0.2
| 0
% 05 x1 1 0
W f,@= | fuehipe-x1) dx
0.8
06!
04/ z=x1+x2
0.2
%

1.9 2 2.9 3

y

3



Remark: For a Gaussian random variable X with mean f4 and variance o1 , we recall the
following two results when evaluating probabilities:

P(X <x,)=0 (x{' _ ‘u*""], P(x, <X <x)=0 [xl 'ﬂxJ_(D (Iu '.”.r}
ogpe (o

182(%

X - i 'E_‘L' D X - -l”_l' _5./




EXAMPLE: An electronic company manufactures resistors that have a mean
resistance of 100 Q and a standard deviation of 10 2. Find the probability that a random

sample of n = 25 resistors will have an average resistance less than 95 Q.

SOLUTION:

With n =25, we can approximate the sample mean

A

i=(X,+X,+..X,,)/ 25 by a normal distribution with:

Mean: E{a} =(u+pu+..1)/25= =100

3
.

Var(fi,) =065 = = =4 = o0,=2 95 100

95-100 1%
P, <95)= q{ . ] ®(-2.5)=0.00621 fi = le X; > N(uy, 0%/n) asn - o
i=1

> [y

Remark: Note that in this example, the distribution of the manufactured resistors is not

known; only the mean and variance are known.



EXAMPLE: Suppose that the random variable X has a uniform distribution over the interval The Uniform
0< X< 1. A random sample of size 30 is drawn from this distribution. Distribution

a. Find the probability distribution of the sample mean = (Z X, ] / n

i=1

b. Find P(u,)<0.52. 3 b

SOLUTION: Since X has a continuous uniform distribution, and since n = 30, then the | njegn = (a +b)/2

probability density function of the sample mean ﬁx is approximately normal with: Var = (b_a)/\z / 12

o (a+b) [(0+1) 1 1 —
Meam: Blet) =8()= [—z H—z J5 B== X; > N(uy,0%/n) asn - o

2 (b-a) (0] 1
ag —d —
Var(fix)=6y= —= = = = = 0, =+1/360=0.0527
) =0a= (12)n  (12)(30) 360 B
P(iy, <0.52) = @| 222" Hx :ED[U'SZ_MJ:q)(o_379):0.648027
G, 0.0527

Remark: Note that in this example, the distribution of the sampled data is known. From the

distribution, we can determine its mean and variance,



EXAMPLE: Suppose that X is a discrete distribution, which assumes the two values 1 and 0

with equal probability. A random sample of size 50 is drawn from this distribution.

a. Find the probability distribution of the sample mean = (Z X, ] / Z
i=l

n

b. Find P(i,)<0.6. Z ~ Binomial with parameters
- ' n=50 and p=1/2
i=

SOLUTION: Since n = 50 (> 30), then the probability density function of the sample mean /i,

is approximately normal with:

E(iy)= py =0(1/2)+(D(A/2)=1/2] =
2 2

Var(iy) =62 = Zx - 07172y U/ 2);}(1_” 2)°Qt/ 2): 2[110 — 6,=41/200=0.0707
[

0.6 u 0.6-0.5
P(ir, <0.6)=®| — % |=@| == | = d(1.414) =0.92073
(it <0.6) = ( - ] [U_OW } (1.414)

X

SOLUTION: Note that in this example, X has a discrete distribution. However, since n 1s large,
we have used the continuous Gaussian distribution to approximate the distribution of the

discrete variable /z. .

1/2 1/2

0 1

Mean (X) =%
Var (X) =1/4



Normal Approximation of the Binomial Distribution

11 —(x = px)?
_ g, 2 _
.uX_ZSJ O-X_12'5 fX(x)z —e 20)2( ;o —oo < x <o
| V2T of
.09 |
(50, 0.5) ux =np; ogx =np(l—p)
.07 n _
: I IF PX =% = () P71 -
| l

The Binomial with 03
parameters n=50 and
p=1/2 along with the
Gaussian distribution with 02 . .
same parameter. A \

00

0 50
25

Source: https://digitalfirst.bfwpub.com/stats applet/stats applet 2 cltbinom.html
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https://digitalfirst.bfwpub.com/stats_applet/stats_applet_2_cltbinom.html

EXAMPLE: The lifetime of a special type of chargeable battery is a random variable with mean
40 hours and standard deviation 20 hours. A battery is used until it fails, then it is replaced by

a newly charged one. Assume we have 25 such battery replacements, the lifetime of which are

independent. Approximate the probability that at least 1100 hours of use can be obtained.

SOLUTION: Let X, Xa, ..., X2s be the lifetimes of the batteries.
LetY=X;+Xo+...... + X35 be the overall lifetime of the system

Since X are independent, then Y will be approximately normal with mean and variance:

My =+ + o+ g = 250 =(25)(40) = 1000

0y =0, +0, +..+ 0y = 2507 =(25)| (20) | =10000

P(Y >1100)=1-P(Y glwo):l_m(lm?_ﬁj_ ]

Oy

:l_q)(lwo—moo
V10000
X1 X2 X3 X25

]:1—@(1):0.153655

Time 11



Estimation of Parameters

The field of statistical inference consists of those methods used to make decisions or to draw
conclusions about a population. These methods utilize the information contained in a random
sample taken from a population in drawing conclusions.

The population consists of all the conceivable items, observations, or measurements in a group. In
most cases, it is not practical to obtain all the measurements in a given population (eligible voters,
the unemployed, people below poverty line, Birzeit University students, high school teachers, ...)

For example, suppose we need to find the average height and standard deviation of the university
male and female students. The population here is all university students. It is evident that to get
exact results, we need to take the height of all students and compute the average and the standard
deviation (these are the population parameters).

In practice, a random sample of size n is drawn from the university
population. The heights of the selected students are taken, and then
the mean and standard deviation of the sample are calculated. The
sample mean and standard deviation are used to describe the actual
mean and standard deviation

Estimates of population parameters derived from a subset of the
measurements in a sample drawn from the underlying population 0, = FXLX X, ., Xp)
are called sample statistics By = g(X1, X, Xa» o X)

Population with a pdf
fx(x,64,65)

\-‘______—_____,_.-""/

Random sample of size n

X1, X9, X3, ..., Xy



Estimation of Parameters

e Statistical inference may be divided into two major areas:
Parameter estimation and hypotheses testing.

* |n this chapter, we focus on parameter estimation and
consider hypothesis testing in the next chapter.

* For populations, we define numbers called parameters
that characterize important properties of the distributions,
like the mean and standard deviation of a normal
distribution, the probability of success p in the binomial
distribution, the rate of arrival in the Poisson process, and
the end points a and b of the uniform distribution.

* Estimation represents ways or processes of learning and
determining the population parameter based on the model
fitted to the data.

* Point estimation, interval estimation, and hypothesis
testing are three main ways of learning about the
population parameter from the sample statistics.

Population with a pdf
fx(x.64,6,)

Random sample of size n

X1, X5, X3, ..., Xy,

6; = fXLXX, . Xp)

0, = g(X1, X2, X3, o, Xp)

é = f(X1; XZI"'an)
P(91S9S92)21—a,0<a<1

Point and interval estimation



Estimation of Parameters
* In point estimation, we estimate the unknown parameter using a single
number that is calculated from the sample data.

« The point estimate of the height of students based on the random sample would be a number
like 175cm for male students and 165 cm for female students.

Population with a pdf
fx(x,6,,6,)

* Ininterval estimation, we estimate an unknown parameter using an interval
of values that is likely to contain the true value of that parameter (and state
how confident we are that this interval indeed captures the true value of the

Random sample of size n

X1, X5, X3, ..., Xy,

parameter).
e A confidence interval would be like: 0, =f(X, X, X, ... Xn)
P (height of male students falls between 173cm and 177cm) > 0.95. By = (X1 Xy X0 or X))
* In hypothesis testing, we begin with a claim about the population (usually, *
called the null hypothesis), and we check whether or not the data obtained 0, 0 0, 0
from the sample provide evidence in favor or against this claim.
e The hypothesis testing would test the null hypothesis: Height of male students = b = F(Xy, Xy ..., X,)

175 cm versus the alternative hypothesis Height > 175 cm
P(01SOS02)21—a,0<a < 7

Point and interval estimation



Formal Definitions and Terminology

In statistics, we take a set of n independent measurements (X, X5, ..., X;,) of size n from a

distribution X (population) for which the pdf is f,.(x, 6, 6,) by performing that
experiment n times.

The random variables X, X, ..., X,,, called a random sample, have the same distribution
fy(x, 6, 6,) and are assumed to be independent. Joint pdf = product of marginal pdf’s

The purpose is to draw conclusions from the properties of the sample about properties
of the distribution of the corresponding X (the population).

For populations, we define numbers called parameters, denoted (6, 6,) that

characterize important properties of the distributions. Here, the pdf is explicitly ex‘pressed

in terms of the parameter as /. (x, 6,, ,) . These parameters are unknown.
The unknown parameters (6,, 6,) are estimated by some appropriate functions of the

observations 0, =fX1,X,,....X,);0, =9 X, X3, ..., X3)



Formal Definitions and Terminology

The function 6 = f(Xy, X5, ..., X,,), of the observable sample data, that is used to estimate
the unknown population parameter is called a statistic or an estimator. A particular value
of the estimator is called an estimate of 0. .

A probability distribution of a statistic is called its sampling distribution fa(0)

We consider two types of parameter estimation, point estimation and interval estimation.
Examples of parameters: height of male and female university students, the percentage of
smokers among high school students, the compression strength of concrete, the
percentage of students who favor e-learning techniques, ...



Point Estimation

Point estimation involves the use of the sample data to calculate a single value, which is to
serve as a best guess for an unknown parameter. In other words, a point estimate of some

unknown population parameter (0) is a single numerical value

The estimator @ is a random variable

with a sampling distribution fg(@).

This estimator should have certain

desirable properties that makes it

close to the true value in a

probabilistic sense.

* [t should be unbiased

* Should have a small variance

* Should have a small mean squared
error.

Point and interval estimation 05 = g(Xy, Xy, Xa, o X)) These properties are considered next.

6 = f(X,. X, o X,) |

Population with a pdf
fx(x,61,65)

Random sample of size n

) Xy Xy X, o X,
8 == f(Xll Xz, noog XTL)

POL<0<0,)=21—a,;,0<a <1 gI:f(XiaX:Xa--an)



Desirable Properties of Point Estimators
An estimator should be close to the true value of the unknown parameter.

Definition: A point estimator (9) is unbiased estimator of (0) LLE(Q) =0,

If the estimator is biased, then (&) — 6 = B is called the bias of the estimator (0) .

Let éﬁ , éﬁ be two unbiased estimators of (0). A logical principle of estimation when

selecting among several estimators is to chooses the one that has the minimum variance.
Definition: If we consider all unbiased estimators of (0), the one with the smallest
variance is called the minimum variance unbiased estimator (MVUE).

When Var(éﬂ) < Var'(éB) , 6’; is called more efficient than éB.

Recall that the variance Var(0) = E{[0 — E(0)]’} is a measure of the imprecision of

the estimator (a measure of the spread of the data around the mean value)



Mean Squared Error of an Estimator

Definition: the mean square error of an estimator (9) of the parameter (0) is defined as:

MSE(0)= E(6-6)°
This measure of goodness takes into account both the bias and imprecision.

MSE(@) can also be expressed as:

MSE(0) = E{[0 — E(0)+ E(0) - 01} = E{[(0 — E(®)) + ((E(0) - 0)]*}

MSE(@)=E@ -E(0))*+2B E{(0-E@)+B>=Var(0)+ B’

MSE(O) =Var(0)+ B

Definition: An estimator whose variance and bias go to zero as the number of observations

goes to infinity is called consistent.



EXAMPLE: Let X; and X, be a random sample of size two from a population with mean g,
X +X X, +2X,

2
3

and variance O'i. . Two estimators for 1, are proposed: 4, = and [, =

Which estimator is better and in what sense?

SOLUTION: First, we check for the un-biasedness of the two estimators

Four more examples
on point estimators
are fully explained
in the next lecture,
entitled “examples
on point estimators)

. X +X [+ L A
E(u) = E(— ; 2)= e i . . Therefore, £4 is an unbiased estimator of /.
(First bias: B, =E(f,)— 14, =0) A
- P -« + 21 A . . e
E(uy) = E( Lr2d, )= ac ile 38 4. . Theretore, L4 is also an unbiased estimator of f{ Ll
. 3 Distribution of 6,

(Second bias: B, = E(/1,)— 1, =0)

Next, Now, we evaluate the variance of each one of the two estimators:

of 6,

. X +X 1 1 1
Var(u,) =Var( 1" )=—0c.+—0.=—0"
2 4 4 ° 2 >
0
3 o 9 9 The sampling distribution of

5

X

Since Var(f) = %g‘i < Var(it,) = go-:’f , the first estimator is more efficient.  the statistic f5 (5) :

. . 1 n n 5 - ’
MSE(,) =Var(g)+ B/ :Eof, MSE(1,) = Var(4,) + B,’ zgafﬁ = MSE (1) < MSE(,)




Point Estimation

Point estimation involves the use of the sample data to calculate a single value, which is to
serve as a best guess for an unknown parameter. In other words, a point estimate of some

unknown population parameter (8) is a single numerical value

0 =fX,.X, . ,.X). The estimator 8 is a random variable with a
sampling distribution fg(@). This estimator
should have certain desirable properties that
makes it close to the true value in a
probabilistic sense.

e It should be unbiased

e Should have a small variance

e Should have a small mean squared error.
These properties are considered next.

Population with a pdf
fx(x,61,65)

D

= f(X1, X2 o0y X))

Random sample of size n

X1, X5, X3, ..., Xy

In interval estimation, we estimate an

unknown parameter using an interval of

values that is likely to contain the true value

. of that parameter (and state how confident

Point and interval estimation 01 =f(XL XX, ... Xn) we are that this interval indeed captures the
by = g(X1, Xy, Xs) o) X1) true value of the parameter)

P(91S8S82)21—a,0<a<1



Examples of Point Estimators

Unknown
Parameter (0)

Statistic (é})

Remarks

Used to estimate the mean regardless of

Hx whether the variance i1s known or unknown.
2 Z(x -, Used to estimate the variance when the mean
n- 1< 1s unknown.
2 2 = 2Ny - u ) Used to estimate the variance, when the mean
X ﬂ;“( " Hy) is known.
oy Used to estimate the probability of a success in
p P=— a binomial distribution. n: sample size, x:
! number of successes in the sample
Py o -1, = X, <%, | Used to estimate the difference in the means of
AT T = n,  “F n, | two populations.
p1—p> p_p-1_n Used to estimate the difference in the
- 1 2

proportions of two populations.




Desirable Properties of Point Estimators
An estimator should be close to the true value of the unknown parameter.

Definition: A point estimator (9) is unbiased estimator of (0) LLE(Q) =0,

If the estimator is biased, then £(6)— & = B is called the bias of the estimator (0) .

Let éﬁ , éﬁ be two unbiased estimators of (0). A logical principle of estimation when

selecting among several estimators is to chooses the one that has the minimum variance.
Definition: If we consider all unbiased estimators of (0), the one with the smallest
variance is called the minimum variance unbiased estimator (MVUE).

When Var(éﬂ) < Var'(éﬁ) , 6’1, is called more efficient than éB.

Recall that the variance Var(0) = E{[0 — E(0)]’} is a measure of the imprecision of

the estimator (a measure of the spread of the data around the mean value)



Mean Squared Error of an Estimator

e Definition: the mean square error of an estimator (0) of the parameter (0) is defined as:

MSE(6) = E(0—6)’
e This measure of goodness takes into account both the bias and imprecision. MSE(@) can

also be expressed as:

MSE(0) = E{[0 — E(0) + E(0) - 01"} = E{[(6 - E(0))+ ((E(0) - 0)]*}

MSE(0)=E(6 - E(0)*+2B E{(6—-E(O)}+ B*=Var(0) + B*

MSE(O)=Var(0)+ B’

e Definition: An estimator whose variance and bias go to zero as the number of observations

goes to infinity is called consistent.



EXAMPLE: Let X; and X, be a random sample of size two from a population with mean g,
X +X X, +2X,

2
3

and variance O'i. . Two estimators for 1, are proposed: 4, = and [, =

Which estimator is better and in what sense?

SOLUTION: First, we check for the un-biasedness of the two estimators
B(i) =B~ =)=t
(First bias: B, =E(f,)— 14, =0) A
X, +24, )= M+ 24, = u_ . Therefore, fﬁ is also an unbiased estimator of £{

3 3 Distribution

(Second bias: B, = E(/1,)— 1, =0) : of 6,
Next, Now, we evaluate the variance of each one of the two estimators:
X +X 1 1 1
Var(w) =Var(— D)=_o'+—_0o’=_0"
(14,) (2)4A4_\21
§)
3 o 9 9 The sampling distribution of

Since Var(f) = %g‘i < Var(it,) = go-:’f , the first estimator is more efficient.  the statistic f5 (5) :

= ut_ . Therefore, ﬂl is an unbiased estimator of [{.

Distribution
of 6,

E(ﬁz) = E(

>

X

. . 1 n n 5 - ’
MSE(,) =Var(g)+ B/ :Eof, MSE(1,) = Var(4,) + B,’ zgafﬁ = MSE (1) < MSE(,)




EXAMPLE: Find the expected value and the variance of the sample mean
A 1 n
{l.. = — UL
! X ” ; :":

SOLUTION: Let U, and O'; are the mean and variance of the population

parameters.
The estimator /7, is‘ used to estimate the population mean /(.

. 1 L 1|
E{/ur:} — HE{ZX:} — H{ZE{X:}}
1| 1
- ;{Zlﬂ} - ;(m—) = 44,

The variance of 4, 1

Var{ft,} :Vm[ Zx] — Var {Zx} ziVa?"(xf): ”0';,;: ﬁ

(unbiased estimator B = E(i)— 1=0)

n n
Remark: Note Var{/l,} tends to zero as n tends to infinity. Therefore, /I, is a
consistent estimator.




EXAMPLE: Show that the sample variance
,..‘ 2 1 s

Z (X, - gy )

. . . . . g
(when the mean is known) 1s an unbiased estimator of the population variance &5

SOLUTION: Need to verify that £ {&j;}zo-‘
. 1 <
E( ; ) Z E(X;-py)

Note that £ (X - ;IX) — o ; since the mean is known . Therefore,

no -
X 2
( ) E D'X— =0y -

-~ . . 7
Therefore, & is an unbiased estimator of &3




EXAMPLE: Show that the sample variance &2 = L Z (x, - f1,)" (when the mean is unknown) is an
2 n - 1 ~ i 2

n

unbiased estimator of the population variance o v (rux1) (xpxz)  (x1,x3) Total Terms n*

X ﬁ!‘ - — : .
SOLUTION: Need to verify that E{c, }=0,, TE (xg,x1)  (x2,%2)  (x2,%3) Diagonal:n

Of f Diagonal n>—n
A computationally simpler expression for the sample variance is (x3,x1) (x3,X2) (x3,X3) _ =n(n-—1)

Hz.ﬁrf—[z.rf]
== =1 E{6}}= ny x; — X, = ny E(x")—E X,
i n(n—1) = Etox)= H(H— 1) { ;21: (z ] } n(n—1 ){ z () - (Z ] }

Note that since E{xf} zyi,+cr§,1then ;;ZE(-\’;E):F?z(ﬂ_§-+0'_§-) E(Xlz) — E(XiXi) — ;2 + 0')%

i=1 X
' n 2 " n n
E[Z.YJ = E ZJ;ZJ:J}:
=l =l el
The double summation contains n” elements n terms are such that i=j, and (n*-n)=n(n-1) are such that i #j.

When i=j, E{x;} =p; +05, and when i #j, E(xx,) = E(x,)E(x;) = (1; since the random variables
are independent.

=

._il-r n H n | | _ 2
E ZZI;IJ}:ZZE(%;%) E(XLX]) = Uy

=l j=1 i=1 j=l

Therefore, ZZE(:qxj) =n(u; +o3) +n(n—Dus =nosy +n s

i=1 =1
1
n(n-1)

1
n(n-1)

2

E{63}= {nza'ff - no'd‘:'f} =0y

1 (py +03) —noy —m' p | =




EXAMPLE: Consider a random sample of size n taken from a discrete distribution, the pmf of which is given

o _ e Xl
by: f(x)=6"(1-60)"",x=0, 1. Two estimators for 8 are proposed & =X = —ZX cand 6:=
I

n+2

a. Which one of these two estimators is an unbiased estimator of the parameter 67
b. Which one has a smaller variance?

1-8 0

SOLUTION: First, we find the mean and variance of the distribution X.
E(X) = 1, =(0)1-0)+()O) =05 E(X*)=(0)1-6)+(1)0) =0

Var(X)=0} =E(X*)—(u,) =60-6*=0(1-0) 0 1

Expected values of the two estimators

(A~ N 1 1 n Mean (X) =
E kﬁ' ) ( ) ZE (X)) Z 6 = — = 6 = unbiaded estimator = B, =0 Var (X) =6(1-6)
1 s 1 s nd +1 . .
E 6’;): E{nXJrl}: {HE(X)Jrl} = {ﬂ9+1}: —> Biased estimator
\ n+2 n+2 n+2 n+2

(Second bias; B, = E(ﬁ;)—,ﬂg _ ”‘9+21 6= 1- 22‘9 ). The bias approaches 0 as n goes to infinity
+ n-+




Next, Now, we evaluate the variance of each one of the two estimators:

noy _on _ 0(1-06)

Var{a}: Var{)_(}ZVar[l ifo —th{ix}} ZV&F( X,)=— |
n 4 n i=1

n 1 L

Var{0,y =var| 721 = " yar{X} =" 61-6) _ n6(1-6)
n+2 (ﬂ—|—2) (ﬂ—|—2) Z (ﬂ+2)
~ 6(1-6 6(1-6
Since Var(6,) = no(1-0) < Vr:rr(@) = (1-9) , the second estimator is more efficient.

(n+2) n

MSE (i) = Var(i,) + B2 = 24=9) MSE(f1,)=Var(i,)+B,* =
L (n+2)

no(1—6) [1—29)2

n+2

Y=aX+b = uy, = auy + b, 0f = a’os,

10



Maximum Likelihood (ML) Estimation
(A Method for Obtaining Point Estimators)

* Point Estimation deals with the method of estimating
an unknown parameter of a population based on
random samples from the same population. In the
parameter space, it is represented as a point. Hence the
name point estimation. Desirable properties of a point
estimator was addressed in a previous lecture.

* The assumption here is that the parameter to be
estimated is a constant with one value, and the sample
statistic computed from the sample is estimating that
value exactly.

 Maximum Likelihood is one method of obtaining point
estimators..

* In this lecture, we will explain this method and present
a number of illustrative examples.

Population with a pdf
fx(x,64,6;)
*\.________—____r___.,-"/

Random sample of size n

X1,X5,X3, ..., Xy

éﬁ; = f(X]_:XJXr ---an)

0, = g(Xy, X5, X3, oo, Xp)



Maximum Likelihood (ML) Estimation
(Method for Obtaining Point Estimators)

Motivating Example: The probability p of a success in a binomial experiment may be 0.1 or it may
be 0.9. To resolve the uncertainty, the experiment was repeated 10 times and 3 successes were
observed. What will be your estimate for p in light of the experiment outcome?

Solution: Let us calculate the probability of getting 3 successes in 10 trials for the two possible

values of p using the binomial distribution
P=0.1 @
10

P(x=3:0.1) = [ ](0.1)3(1— 0. 1)? =0.0574
> 3 heads in 10 trials
10 Which P???
P(x=3:.09)= [ A ](0.9)3(1 0.9)"’ —8.748*10°°
D

Therefore, we observe that p=0.1 has a higher probability of producing the outcome and our estimate

for p would be p =0.1.




Maximum Likelihood (ML) Estimation

Motivating Example: Let p be the probability of a success in a binomial distribution. This probability
1s unknown. To estimate p, the experiment 1s performed 10 times and 3 successes are observed. Find a
maximum likelihood estimate for p.

Solution: Any value of 0 < p <1 1s likely to produce the three successes in the 10 trials. But there 13
a specific value, p, to be estimated, that has the highest probability of producing the result. This value
of p 1s called the maximum likelihood estimate.

The probability of getting 3 successes in 10 trials for any value of p 1s:
T
f(p)=P(x=3p) =[ 3 ];?3(1—;?)?

To find the specific value of p that maximizes f(p), we differentiate f(p) with respect to p, set the
derivative to zero, and solve for p 0<p<1

10 L
@z[ ][3;:2(1—;})- +7p 1= p)(=D)] =0
D 3

Solving for ﬁ, we get p=3/10|

3 heads in 10 trials
Which P???




How to Obtain the Maximum Likelihood Estimator

The maximum likelihood estimator selects the parameter 6 due to which the measurements

Xy, X5, ..., X,, occur with the largest possible probability. The following steps summarize the
procedure for obtaining a maximum likelihood estimator for a continuous parameter 0 based on

a random sample of measurements X;, X, ..., X,, of size n

e Form the joint pdf of the measurements X;, X5, ..., X,, (expressed in terms of 8). The joint
pdf is also known as the likelihood function.
L(H) = f(XIJXZJ !XH:' 9)
e Since the observations are independent, the joint pdf is the product of the marginal pdf’s
e The maximum likelihood technique looks for that value (8) of the parameter 6 that

maximizes the joint pdf of the samples. A necessary condition for the maximum likelihood
estimator of () is:

f—fl(g) =0 or equivalently ;M{L(G)} =X
06 oG

Note that this step 1s justified since In(u) is a monotonically increasing function in u.

~ 0
e Solve for 6 that maximizes L(@). The solution to 0 In {L(H)} — 0 is the desired maximum

likelihood estimator.



EXAMPLE: Given a random sample X, X,,....,X of size n taken from a discrete distribution,
the pmf of which is given by: f(x)=60"(1-6)"" ,x=0, 1.

e Use the ML technique to find an estimator & for 6.
e Is this estimator unbiased?

SOLUTION: Form the likelithood function as a product of the marginal pdf’sof X.,i=12,..»
L(x.0) = f (x.0) [ (x,.6)...f (,.6)
L(x 9) [9‘;1 (1 9)1—11 :'[9'5 (1 6)1— :' [9"‘:; (1 9)1 1”:' 9{11+1 3 +...%x,) (1 9)}1—{x1+1 y +...%,)

]nL(x,E):(x1+x2+...xn)]116'+[n—(x1+x2+...x”)]ln(1—6*) - £

Differentiate w.r.t to @, set derivative to zero, we get
X —n+) X

IR A I R 1

do ’ 0 1-6 ns 0
Now, we calculate the parameters of Y. Mean (X) =

E(X)=u_=0)(1-6)+1)0)=06; Var (X) =6(1-6)
Therefore, (A) ! ZE X 1 26' = — = @ = unbiaded estimator = Bias =0




EXAMPLE: Given a random sample X,. .X,......X of size (n) taken from a distribution X with pdf

f(x)=(a +1)x%,0<x<1. Use the ML technique to find an estimator for a.
SOLUTION: The likelihood function is

L(x,a) = f(%.0) [ (,,@)...f(x,.q)
L(x,@) =(a +Dx*..(a + 1)x* = (o +1)"x".. x°
InL(x,a)=nln(c+1)+alnx,.. +ahx,

Differentiating with respect to a and setting the derivative to zero, we get

& et s =
do a+1
Solving for a we get
- n |
= —1 —1 . Estimator, (note that Inx, <0 since 0 <x < 1)

~Inx, .. ~Inx = (_Z;]nx?_)/’n

Now, suppose that the random sample yield the observations {0.52, 0.6, 0.55, 0.58, 0.5}.Then, &«

5 5
= —l=—-1= g (Point estimate of )
—In0.52-In0.6-In0.55-1n0.58—-1n0.5 3 3

K>




EXAMPLE: Given a random sample X,..X,..... X of size (n) taken from a Gaussian population
with parameters 4, and o, . Use the ML technique to find estimators for the cases:
a. The mean g, when the variance o3 is known.

b. Thevariance o; when the mean g, is known.

Solution: Form the likelihood function as a product of the pdf’s of the n Gaussian observations

(=)’
—( A5 —Hy ) ) ; 20% n

= € — = In(L)= Z ’u"") ——111(2:1'0';.) (1)

;_1 JZEJX (ZHU;)E = 2

a- Take the derivative of (l) w.r.t f, (treating o as a constant), set derivative to 0.

> {la1} =0 1)=0 = 3 x-3 (1)=0

6}1'}( i=1 i=1 i =1 (2)
= = —Z\ ML Estimator (unbiased)

n ;4

b. Take the derivative of (1) w.r.t o (treating i, as a constant), set the derivative to 0.

0 2 1 ) :
o {mML}=0 = o5 =— Z(x - tt-)” (Note the division by n since £, is known). In the
D-X H i=1

previous lecture, we proved that this estimator 1s unbiased.



EXAMPLE: Given a random sample X, X,,.... X of size (n) taken from a Gaussian population
with parameters u, and o, . Use the ML technique to find estimators for the case when the

mean f, and variance o are both assumed unknown.

Solution: Form the likelihood function as a product of the pdf’s of the n Gaussian observations

= (5= Hy)’
—(x _.-”!_} _I.Zﬂ: 20%
o = € I In(L) = Z (= )’ —Eln(Z T cri,) (1)

i=1 ,,,‘2 T D‘X (2 ,?r U;)E — 2'5"3:' 2

Set i111}_2 =0, ‘ ~InZ =0 and solve for x, and o . The result is
Ol 5 00x%
n 1 7 .
Mg — — Z X s Oy = — Z (x; - a”&
| n ;.4

The ML for the mean is unbiased. However, the ML of the variance is biased since

E(or,) = E(l > (x, - py) ] (H - | Jo'i,; An unbiased estimator is
N n
Gy = 1 Z (x. - t1,)" . In the previous lecture, we proved that this estimator is unbiased




Interval Estimators for the Mean and Variance

An interval estimate of an unknown parameter (6) is an interval of the form 0, <0<0, where
the end points 0, and 0, depend on the numerical value of the parameter to be estimated for a

particular sample. From the sampling distribution of (8) we will be able to determine values of

0, and 0, such that:

point estimate

PO <0<0,)=1-a ; 0 < a <1

e
where, ©: the unknown parameter 61 8 0> °
(I-a): is the confidence coefficient PO, <0<6,)>1—a;0 <a <1
o 1s called the confidence level.
6, and 6,:  lower and the upper confidence limits on 6

In point estimation, we estimate the unknown parameter using a single number that
Is calculated from the sample data. § = f(X,, X,, ..., X,,)



Confidence Interval on the Mean: (Variance Known)

Suppose that the population of interest, X, follows the Gaussian distribution X ~ N(u,.03),

[, is unknown and o3 is known.

. e . 1 & ) A random sample of n measurements
The sampling distribution of Hx = _Z:, %~ N0 /1)y, X,,..., X, is drawn from a Gaussian
- distribution with an unknown mean and a
A . L, — UL : L
Therefore, the distribution of the statistic Z = Ex7Fx N (0.1) known variance. The objective Is to
o /\n construct 100(1-a))% confidence interval
on the mean.
[ [
P{-z,,<Z<z,,}=1-a = P{-z,, < < Hx—H <z ,t=l-«a
UX/\/_

{ﬂ;i 2,20y /\/_? Uy <Uy+Z, (TA/\/;] =1—«a; 100(1-a)% confidence interval on
where z_,, is the upper 100(a/2)% point of the standard normal.

Point
estimate Confidence Interval
ﬂx_g’% GXXJE M M f‘:s;‘*é’% G};X\E




Choice of the Sample Size

The definition above means that in using [l to estimate i, , the error E =| fi, — . | is less

than or equal to %, o / Jn with confidence 100(1 — o). In situations where the sample size

can be controlled, we can choose (n) so that we are 100(1 — )% confident that the error in
estimating [l 1s less than a specified error (E).

~

—
!

\

. .
nis chosensuchthat £=z o, / Nn o= on :( /2~ X ‘
- . £ )

P{—2q/2 0x /NN < fix — pix < Zqpp 0x/\n} =1 -«

E= |y — ux| < z4/2 0x/n

Point
estimate Confidence Interval
ﬂx_g’% GXXJE M M f‘:s;‘*é’% G};X\E




EXAMPLE: The following samples are drawn from a population that 1s known to be Gaussian.
7.31 | 10.80 | 11.27 | 11.91 | 5.51 8.00 9.03 | 1442 | 10.24 | 10.91

a. Find a 95% confidence interval on the mean if the variance of the population is known to be 4.
b. Find the sample size if we want to be 95% confident that the error is less than 0.2.
SOLUTION: Clearly, the sample size 1s n=10. A 95% confidence interval takes the form

P(u,-z,,0, / Jn< Wy <fl,+2,,0, / Jn)=l-a

Here, the sample average is: 1, E = |fx — x| < 242 0x/\10

||
S |
. [M]
"'\JH
I
Vo)
O
=

a=0.05 = a/2=0.025. From the table of the Gaussian cumulative distribution function,
we find that @(-1.96)=0.025 = z_, =1.96. The confidence interval is

1.96 x+/4 1.96 x4
P{9.94 x\/_i,u}{.£9.94+ V4

J1o

}0.95 = P{8.70 < u, <11.1796} =0.95

With n=10, we are 95% confident that the error is bounded by X
E=z,,0,/dn=196%2/10=1239 8.7 9.94  11.

~

] =385

Z .0y ]3 _(1.96*2

The sample size for n to have an error <0.2, is » :( = 02

17



Standard Normal Cumulative Probability Table

Cumulative probabilities for NEGATIVE z-values are shown in the following table: — . S
F

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
-3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
-3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
-3.1 0.0010 0.0009 0.0009 0.00098 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
-3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
-2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

-1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367




EXAMPLE: The rainfall in a region is normally distributed with a mean value p and a standard
deviation ¢ =25 cm. Over a certain period, the following rain gauge readings (in cm) were collected

11541995 110.2 | 79.1 | 187.6 | 106.4 | 101.7 | 112.5 | 138.7 | 117.5 | 99.1 | 134.1

a- Find the width of a 95% confidence interval on the mean.
b- If the width of the 95% confidence interval on the mean is to be reduced to 10 cm, how large

should the sample size be to get this result?
SOLUTION: Clearly, we have a sample of size n=12. A 95% confidence interval takes the form

P(u, — %oy Ox X\/; <u, <pf,+ %oy Ox X\/;) =1-a
Here, the sample average is: 1, = é x, =116.81
i=1
a=0.05 = a/2=0.025. From the table of the Gaussian cumulative distribution function, we
find that ®(-1.96)=0.025 = =, =1.96. The confidence interval is
(1.96)(25) _ (1.96)(25)

Vi2 V12

With n=12, we are 95% confident that the error is bounded by E = 5@}/ o'_i_,f\/; =1.96*25/+/12 =14.14

E= |y — ux| < zg/2 0x/n

M, < 11608167+

P{ 116.81- }:0.95 = P{113.98£ yr. £119.64}:O.95

, . 200y ) _(196%25Y
The sample size for n to have an error <10,1s »n= L”":E = | = = =25

\"al




Confidence Interval on the Mean: (Variance Unknown)

Suppose that the population of interest has a normal distribution with unknown mean p and

- 2
an unknown variance oy.

Estimating the mean, when the variance is known, was considered in the previous lecture. In
u, — u : :
SN : \f to establish the confidence interval.

- Ox /N7 The number of independent pieces of information
Hy — Hy N(0.1) that go into the estimate of a parameter are

o,/ \/; *7" called the degrees of freedom

that case, we used the statistic Z =

Note that with o, known, Z =

Definition: Let X1, Xo, ..., Xy be a random sample from a normal distribution with unknown
: ) : (, — u e .
mean [, and unknown variance Gy . The quantity 7 = ~—*—— has a T-distribution with
Oy / \E
. 1 - : ,
k=n-1 degrees of freedom, where 6; = —> (x, - /)’ is the sample variance and
71-1 =l n n—1

| 1 .
i, = —> x, isthe sample mean. Hx = szi:Xn—nP‘X—ZXj

?:" i=1 i=1 j=1

When the variance is unknown, the sample standard deviation used in the definition of T is no
longer a constant, but rather a random variable. As such, T does not follow the Gaussian
distribution.



The probability density function of the T-distribution is given here, without proof.

r[(ml)] .
ACE L ecrce po BXTR g LNy gy
Ny r[ﬁj( X ]2 Ox /\n i=1
2 )\ k+1 n

1
The T distribution is similar to the Z ~ N(0,1) distribution in that it is symmetrical and Hx = gz Xi
bell-shaped, but more spread out (has a higher variance). '

The exact shape of the T distribution is determined by one parameter, (k = n-1), called the
“degrees of freedom. Therefore, there is a T distribution for each value of n.

e . k 0.40

The mean of the t-distribution is zero and the variance o; = Py 035
As n — o0, the t-distribution converges to the normal distribution. 0.30F
The maximum is reached at the mean value. _0.25F
=0.20}
0.15}
A plot of the t probability density function for 4 different 0.10}

values of the degrees of freedom k = n-1, Wikipedia 0.05}
0.00




Confidence on the mean when the variance i1s known takes the form

c o
- - X - —_ Xy
Plu, -z, —==<p,<u,+z ,—4=)=1-«a
Jn Jn
Definition: Confidence interval on the mean when the variance is unknown

If 11 v and O, are the mean and standard deviation of a random sample from a normal

distribution with unknown variance 3, the 100(1 — ot) % confidence interval on p. is:

—1l-«

i G
P{Ju_,{ {op s IJ—_LIYEHY Q'IE‘H'ITEJ

where ¢ ot is the upper 100(ov/2) % point of the T-distribution with (n—1) degrees of freedom.

Derivation: P{ <T<t,, P{Iﬁx — x| <ty 2n-1 JX/\/H} =1—«

al 2 -1

Pl <Hxlxoy } -«

P<ﬁf_r:xf2=n-1_X£ﬂ iﬁ :x,f? nl\/_}_l

P{_ta/z,n—l ox /NN < fix — pux < La/2,n-1 O-X/\/ﬁ} =1l-a tan lo2 -



EXAMPLE: For the following samples drawn from a normal population:

7.31 | 10.80 | 11.27 | 11.91 | 5.51 8.00 9.03 | 1442 | 10.24 | 10.91

Find 95% confidence interval for the mean if the variance of the population 1s unknown.

SOLUTION: The sample size n = 10 and the degrees of freedom k = n-1=9.

The sample average and the sample variance are
P{|fiy — ux| < 1.83} = 0.95

. 1 1 o 1 H . 5
e = —> x,=9.94; 6y = — > (x - fI,) =651
n 5 n-143
A 95% confidence interval on the mean takes the form X
& 5 8.11 9.94  11.77
P, —f —= < fy < iy +f X l-1-a|
X a2 ;n-l_\/g R S ¢ af2 , n-1 ‘\/;

From the table of the T-distribution, we can obtain L i2m1 =loozse = 2.263 as: Therefore,

v6.51 V6.51

<n.<994+27263
Jlo N

P{9.942.263 }0.95:P{8.11{;JX{11.7T}0.95




TABLE B t Distribution Critical Values

Right Tail
Probability

Confidence Level
80% 90% 95% 98% 99% 99.8%

Right-Tail Probability

df=n-1 df 100 t.os0 tozs tolo toos ool t

| 3.078 6.314 12.706 31.821 63.656 318.289 Shaded area — @ P(ty St
2 1.886 2.920 4.303 6.965 9.925  22.328 2 2
3 1.638 2.353 3.182 4.541 5.841 10.214
- 1.533 2.132 2.776 3.747 4.604 7.173
5 1.476 2015 2.571 3.365 4.032 5.894
6 |.440 1.943 2.447 3.143 3.707 5.208
7 1.415 1.895 2.365 2.998 3.499 4.785
8 1.397 1.860 2.306 2.896 3.355 4.501
9 1.383 1.833 2.262 2.821 3.250 4.297

10 1.372 1.812 2.228 2.764 3.169 4.144

| 1.363 1.796 2.201 2.718 3.106 4.025

|12 1.356 1.782 2.179 2.681 3.055 3.930

|3 1.350 1.771 2.160 2.650 3.012 3.852 >



EXAMPLE: A civil engineer is testing the compressive strength of concrete. He tests 12
specimens and obtains the following data (in psi)

2216 2237 2249 2204 2225 2301 2281 2283 2318 2255 2275 2295

a. Find point estimates for the mean and variance of the strength
b. Construct a 95% confidence interval on the mean strength
SOLUTION: The sample size n = 12 and the degrees of freedom k= 12-1=11.

The sample average and the sample variance are

. 1 P o 1 Iy . 5 .
by = 2%, =2261; 6y = HZ(A‘I. - f1,)"=1309 > 6, =36.18
i=1 ]

A 95% confidence interval on the mean takes the form

{A Gy . &X} _ PllEx—px| <22} = 0.95

= f‘x_fa;z;n-lﬁﬂﬂxix‘fxﬁazz;n-lﬁ =-=

From the table of the T-distribution, we can obtain 7, , =7, =2.2 as: Therefore,

P{2261 22208 ) < . 36'18}0.95:>P{2238{;IX{2283}0.95
V12 Nip)




Confidence Interval on the Variance of a Normal Population

The y° Distribution: Let Z,, Z,..... Z be n independent and identically standard normal

random variables (each with mean 0 and variance 1). The random variable 7 with n degrees

of freedom is defined as:

7 :(Zl)z+(22)2+...+ (Z,).

2

Its mean and variance are J’E(;{2 ) =n, Var(g{z) =2n

This distribution is positive valued and skewed to the right.

0.20

0.15

0.10

0.05

0.00

Chi-Square

df=5

0 2 4 6 8 1012 14 16 18 20 22 24

=—df =10

On the next slide, we derive the pdf of the each component Zl-2

1 z*
fz(2) = Nox: e 2

Y=225 fy(y) =

2T

jH

e

=y
2

; y=20

E(Y)=1E(Z* =1
Var(Y) = 2

The shape of the Chi-square
distribution depends on the
number of degrees of freedom




EXAMPLE: Let (X) be a Gaussian r.v with mean 0 variance 1. Define Y = X?2. Find {¥(y)

SOLUTION: From the figure, we note that
P(y <Y -::y+ﬂ.y): 2P(x < X <x+ Ax)

JSr(OAY =2 f (x)Ax

A 2@ 2@
(M) =2f,(x = = ;=0
Jr(M =27 (x) | Ay &
Ax dx
Here, y=x" ; ﬁsz‘
x

164 Y
14 4
121




Confidence Interval on the Variance: (Mean Known)

distributed

- Let X, X,,..., X be n independent and identically

with mean g,

2 _| X\ T My 2 X, ~ Hx 2 Xy ~ My T 1Y 2
— + .t — . —
Z[JHUJ (UJ aﬁf;(x“““
» W 1 < B 2| m 1 i
7 _C"i({ ;(-’ﬁ- ,ux)} c-'i. -, Z(T Ly,

normal random variables (each

. 2 * 2
and variance o ). The random variable y~ can be expressed as:

A

-%2 -1

- xz wlan

Confidence Interval: The confidence interval is cﬂnstructed as

P{Zlg_aﬁ:” EZE il;}rg=Fj}:1—ﬂf — P{Zlgrzfz_” iH D'

7 ~ 7
1 T 11O,
X 2 X —
PIEZx <52 < D% Loy g
ZI—EEJ."E._?’I‘

where 3>, andy; ., ,
distribution with (n) degrees of freedom, respectively.

are the upper and lower 100(o/2)% points of the

—Zcff?" u} =1-a
D-.'-'i;’

chi-square

/2


Tec
Text Box
distributed


Confidence Interval on the Variance of a Normal Population: (Mean Unknown)
Let X, X,..... X be n independent and identically standard normal random variables (each

with mean x, and variance o'i. ). The random variable y* with (n-1) degrees of freedom can
be expressed as:

n
7 ﬂ_l ]. 1 ~ 2 ﬂ_l " ~ 1
X =3 {le(xr_#x) }_ ; Px> X, = My Ux = szi

Oy — o n-1- =

Definition: If 62 is the sample variance from a random sample of (n) observations from a

2
X

normal distribution with an unknown mean and an unknown variance Gi , then a 100(1 — a)%

confidence interval on G_f{ 18: The number of independent
pieces of information that go
(n—1) C’;-; (n—1) -:':T into the estimate of a
= < O‘ < parameter are called the
Xajz2 na Zl_g 2 01 degrees of freedom

where ., .,andy; ., ., is the upper and lower 100(c/2)% point of the chi-square

distribution with (n — 1) degrees of freedom, respectively.



2 —
Xo.025, 10 = 204853
2 —
Xo.975, 10 = 3.247
0.95 confidence
2 —
X025, 9= 19.023

2 —
Xo975, 9= 2.7
0.95 confidence

2 —
X o055 = 16.750

X§.995,5 = 0.412
0.99 confidence

Xcz).os, 11 = 19.675

Xg.95, 11 = 4.575
0.90 confidence

Area
12
"l._z
Area to the Right of the Critical Value of x:

df 0.995 0.990 0.975 0.950 0.900 0.100 0.050 0.025 0.010 0.005

1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879

2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 12592 14.449 16.812 18.548
7 0.989 1.239 1.690 2167 2.833 12.017 14.067 16.013 18.475 20.278
a 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
! 1.735 2.088 2.700 3.325 4,168 14.684 16.919 19.023 21.666 23.589
10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
1 2.603 3.053 3.816 4,575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4107 5.009 5.892 7.042 19812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24,996 27.488 30578 3zam
16 5.142 5.812 6.908 7.962 9.312 23542 26.296 28.845 32.000 34267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30,19 33.409 35.718




EXAMPLE: For the following samples drawn from a normal population:
7.31 | 10.80 | 11.27 | 11.91 | 5.51 8.00 | 9.03 | 1442 | 10.24 | 10.91

Find 95% confidence interval for estimation of the variance if the mean of the population is known
to be 10.

SOLUTION: From the sample we calculate the sample variance using the known mean of 10

b n //‘\\ ritical reg
%= 3 - ) =03 (5, - 10)” =586 [\
1 1055 [
From tables of y° -distribution: // \\\
Number of degree of freedom = n = 10 (since the mean is known) T Dl
3.247 20.483

@ =0.05—>a/2=0.025 = ), ,, = 20.483 and z,,,. ,, =3.247

5 52 10x 5.866 10x5.866
P{E%x <2< "% L1 g = P{ R e }:0.95
Zﬂ:ﬁ . H Zl_aj,rg n 20.483 3.247

P{2.863 <07} <18.065} =0.95




EXAMPLE: For the following samples drawn from a normal population:
7.31 | 10.80 | 11.27 | 11.91 | 5.51 8.00 | 9.03 | 14.42 | 10.24 | 10.91

Find 95% confidence interval for estimation of the variance if the mean of the population is

unknown.

SOLUTION: From the sample we calculate the sample mean and sample variance:

Firs

fy = lz.xf:Q.Qil; 5 = %Z(xf -ﬁf)zzézwi - 9.94)’ =651
n i n=-1,5

i=1 Vs
[\
From tables of y* -distribution: / \
/ LY
Number of degree of freedlom=n=10—-1=9 / %
/ N\ NER——
a=0.05>a/2=0025 = z,,s s = 19.023 and y,,,, ,=2.7 | [/ s \&
(n—1) &° (n—1) &° 9% 6.51 0x651) S
— — X 0. X 0.
P 0%x <2 <90y :»P{ <ol < }zo.%
Zcrfz . n-1 Il—a:‘.fi . n-1 19023 27
P{3.0799 <07 <21.7} =0.95




EXAMPLE: A civil engineer is testing the compressive strength of concrete. He tests 12
specimens and obtains the following data (in psi1)

2216 2237 2249 2204 2225 2301 2281 2283 2318 2255 2275 2295
a. Find point estimates for the mean and variance of the strength

b. Construct a 90% confidence interval on the variance of the strength

SOLUTION: The sample size n = 12 and the degrees of freedom k= 12-1=11.

The sample average and the sample variance are

[y = ézxizzzm; Gy = HZ(x - i1,)* =1309 = 5, =36.18
i=1 =l

A 90% confidence interval on the variance takes the form (a = 0.1, a/2 = 0.05)

~ 2
Pl 21) 0y 2 (n=Doy|_, . P{11><1309 ol < 11><13o9}_0_95
Aaj2,n1 Il—ﬂ:ﬁl el 19.675 4.575

P{732< 0} <3147}=095 = P{27.05<0, <56.098}



Confidence Interval on a Binomial Proportion

The Binomial Distribution: A trial experiment is repeated n times under identical conditions.
The probability of a success in any given trial is p. If X is the random variable representing the
number of successes 1n the n trials, then X follows the binomial distribution

4 _
P(X=x)=( J px(l—p)n_l’x=0’1:_“!n 1 2 3 4 . n
x (S,F) (S,F) (S,F) (S,F) (S,F) (S,F)
The mean and variance of X are:
xu}: = E(X) = np [

Var(x)=c% = np (1- p)
The estimator for pis p = X/n
The mean and variance of p = X' /n are X - N(np,np(1 — p))

E (;) =E(X/n)=np/p=p  Unbiased Estimator

—(.1'-rrrp}|2
] T (lon)

- 2 2m(1-p)
Lami-p)

1

] pd-p"

¥

Consistent Estimator: Var -0 as
Var(p) =Var (X /n)=Var(X)/n* =np(1—p)/n* = p(l—p)/n n=> infinity (MVUE)

For large n, the central limit theorem applies and X can be approximated by a Gaussian

distribution. Since the difference between X and ;;, = X/n is a constant, then}; can also be

approximated by a Gaussian distribution (p 1s not too close to 0 or 1 and n is large; n p-> 5 and
np(l—-p=>5).

1



To find a 100(1 — a)% confidence interval on the binomial proportion using the normal
approximation, we construct the statistic:

X —np p-p
7 = _ - P <7<z l=1-a
Jnp(1- p) \/p(l p) { % EV}
f o Z=(X—py)/ox > N(,1)
P{—z ,< p—p <z ,¢=l—-a =P D a\/p(l—p) <p<p+ a\/}?(l P)l_l—
2 \/p(l—p) Z | ¥ &
H

The last equation expresses the upper and lower limits of the confidence interval in terms of the
unknown parameter p.

Wald Method: This method replaces (p) by ;9 in the lower and upper bounds

-

- p(1- p) - p(1- p)
P{P%’%\/p ”P EPEPJF?J’%\/}) ”p =1-a

L -

This method 1s widely used, however careful study however reveals that it 1s flawed and

inaccurate for a large range of n and p and is not recommended as a general method,



Wilson Score method: This has been suggested as an alternative method. It has been khown
to be accurate for most parameter values.
It does not make the approximation as in the Ward method. Rather, it 1s a more complex

method and involves solving a quadratic equation in p. The bounds are the roots of

‘p—;‘—Jrg/g_,z\/p(l_p) . The confidence interval on p 1s
7
~ z. P l—ﬁ z°
P+ S*izﬂ, \/p( p)+4ﬂ‘j
¥ 2 H 1
P = 2
]+ —22
4!




EXAMPLE: In a random sample of 85 automobile engine crankshafts bearings, 10 have a surface
finish that is rougher than the specifications allow. Construct a 95% confidence interval for (p) using
both the Wald method and the Wilson Score method.

. ~ X 10
Solution: 2, =2, =1.96 , p=—=—=0.12]
n 85

Wald Method:

pl5 %V\/p( p){p,{p%ﬂf p(L- pﬂ' L

0.12(1-0.12)
85

Wilson Score Method

0.12(1-0.12)
85

P

A

0.12—1.96\/ <p<0.12+1. 96\/

} 095= P{O.US <p< 0.19} =0.95

2 - 2 1.96)° 1.96
p+ZQ,___.-3 + 7 p(l p) o)2 012 _|_( ) i196 0 12(1 0 12) ( )
S TR I ) 85 485
z2,, 96)
[ 4 Zar . (1.96)
n 85

P{0.101< p<0.1719} =0.95 Tighter upper and lower bounds
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